
Criterion C: Development 
Techniques Used 

a. Graphical Interface 

b. Variables 

c. Lists 

d. Methods 

e. Sensing algorithms 

f. AI algorithms 

g. Sorting algorithms 

Graphical User Interface 

Scratch has a built-in graphical user interface template involving a stage and sprites.  

 

Sprite1 and Sprite2 are the losing and winning text that appears when one of the endgame 

condition are met. They will hide themselves when the game starts. 

The Character, which the player controls, is fixed at the center of the stage. The AI’s 

identifiers are Dave, Stave, and John.  

The Map sprite contains a costume that is an image of a grid.  

 

The above sequence allows the costume to be zoomed in 8 times, forming a map that has 

parts existing outside of the stage. 



The following code sequence decides how the map moves. The y-coordinates and x-

coordinates of the map change depending on where the player’s cursor is pointing, creating 

the illusion that the Character is moving on the map with a fixed camera and point of view. 

 

The above code is also copied to all other sprites except the Character. This ensures that all 

other objects are moving relative to the Character. 

The below code shows how dots are generated.  

 

 

A dot is generated every second and its color effect is also randomized. The cloning block is 

used efficiently here as multiple instances of dots appear throughout the game. When they 

appear, their location is randomly generated with the RandomizeSpawn function, shown 

below. 

 



 

The function is a randomizing algorithm that first randomly chooses one of the four edges, 

and then randomly chooses its other axis position.  

Variables 

Local Variables: 

myIndex – integers used to hold the index of each dot when they spawn 

Global Variables 

PlayerScore, CharacterSize – integers that holds the values of the player Character’s score 

(number of dots eaten) and size of the Character  

DaveScore, DaveSize, SteveScore, DaveSize, JohnScore, JohnSize – integers that hold the 

values of the AI’s scores and size 

PlayerSpeed, DaveSpeed, SteveSpeed, JohnSpeed – double type values that hold the player 

and AI character’s speed factors 

AtXBorders, AtYBorders – booleans that hold the status of whether Character is touching 

the left/right or top/bottom borders, respectively. Not required for AI Characters because AI 

algorithms will not allow them to move towards a border (since no dots will spawn beyond 

map and Character cannot move beyond map). 

These variables are set to global because Scratch has limited programming capacity. If they 

were local, a method would have to be defined for each object to get the values. In Scratch 2, 



they could be done through broadcasting, but would result in less elegant code structure. 

Thus, I decided to set global variables with identifiers to create a simpler, elegant, and 

understandable code structure. 

Lists 

Lists are similar to arrays in other common programming languages. All lists are displayable 

on the stage. 

Rank – holds the Strings “Player”, “Dave”, “Steve”, and “John” 

Score – holds the scores of each character 

dotxvalue, dotyvalue – holds the x and y coordinate of dots respectively, added whenever 

when a dot is spawned, works alongside each dot’s myIndex. Used for AI algorithms. 

Methods 

In Scratch, methods can be called through broadcasting. Broadcasting to call methods are 

also used when two characters interact with each other. The below code shows how the 

Character interacts with the AI characters. Once they are in contact, their size will be 

compared with the CompareAndExecute function that takes in the current score of the target.  

  

The function compares the scores of the two characters and calls the method GameOver.  

 

GameOver is received by Sprite1, the losing message. The game ends and displays losing 

message. 



 

If CompareAndExecute does broadcast GameOver, the game continues and means that the 

Character ate the AI character. So the size, score and speeds are updated. 

 

RemoveDave is received by Dave, and Dave’s scripts are stopped. The same applies to 

RemoveSteve and RemoveJohn. 

 

 

 

 

 

 



 

Sensing Algorithms 

Sensing algorithms are used to set AtYBorders and AtXBorders value.  

  

The Character remains in the map for the entirety of the game. Each of the four sides of the 

map is marked by a specific color, unique throughout. Through sensing the different colors, 

the algorithm can determine which border the Character is on.  

 

 

 

 

 

 

 



AI Algorithms 

There are a total of three AIs that all contain the following key functions. 

 

 

 



When the game begins, each AI will loop through AppearChance and SimulateEating. 

AppearChance follows a randomizing algorithm that determines if the AI should appear in 

the stage at the moment. AI Characters will forever select a random integer, and if it equates 

value 5 (or any other number set in AppearChance), the AI Character will set its size and 

speed based on its score and appear. Their spawn location reuses the RandomizeSpawn 

function. 

Once inside the stage, the score of the AI and the player is compared. If larger, the AI will 

move towards Character, otherwise it will move towards a dot. PointTowards function is a 

mathematical algorithm to determine the direction by taking in two x, y values. To get a 

better understanding, refer to the layout of a Scratch 2 stage below. 

 

If the dot belongs in I, ∆y/∆x > 0, 0 ≤ c ≤ 90, so direction is 90° − c.  

Case II, ∆y/∆x < 0, -90 ≤ c ≤ 0, so direction is -90° − c.  

Case III, ∆y/∆x > 0, 0 ≤ c ≤ 90, so direction is -90° − c.  

Case IV, ∆y/∆x < 0, -90 ≤ c ≤ 0, so direction is 90° − c.  

As seen, for I and IV, the direction is 90° − c, meaning AI xpos > dot xpos. For II and III, 

the direction is -90° − c, meaning AI xpos < dot xpos. Thus an if statement is used in 

PointTowards to separate the two cases to determine the right direction. 

If AI Characters touch the edge of the stage, they will hide themselves and begin 

SimulateEating, a randomizing algorithm to increment the scores of the characters while AIs 

are offstage. 

 

A 

B 

c 

A = current pos 
B = point being pointed at 
c = arctan (∆y/∆x) 
∆y = y of B – y of A 
∆x = x of B – x of A 



Sorting Algorithms 

Score list is constantly sorted using BubbleSort algorithm. 

 

Additionally, the Rank list that contains the names of all characters are sorted as well 

respective to the score each name refers to. This creates a scoreboard that ranks all characters 

in order and assists the player in determining their actions. 

Word Count 1055 

 


